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Abstract 
This paper presents a comparison relating two different vision system architectures. The 
first one involves a smart sensor including analog processors allowing on-chip image 
processing. An external microprocessor is used to control the on-chip dataflow and 
integrated operators. The second system implements a logarithmic CMOS/APS sensor 
interfaced to the same microprocessor, in which all computations are carried out. We 
have designed two vision systems as proof-of-concept. The comparison is related to 
image processing time. Results reveal that one of the solutions to resolve the 
computational complexity of computer vision algorithms is to perform some low-level 
image processing on the sensor focal plane. This concept makes the vision systems more 
compact as a system on chip and increases performance thanks to the reduction of data-
flow exchanges, with external circuits, and power consumption. 
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1. Introduction 

The CCD technology have been the dominant tool for electronic image sensors 
during several decades due to their high photosensitivity, low fixed pattern noise  (FPN), 
small pixel and large array sizes.  

However, in the last decade, CMOS (Complementary Metal Oxide Semiconductor) 
sensors have gained attention from many researchers and industries due to their low 
energy dissipation, low cost, on chip processing capabilities and their integration on 
standard or quasi-standard VLSI (Very Large Scale Integration) process.  

Still, raw output images acquired by CMOS sensors need further processing, mainly 
because of noise, blurriness and poor contrast. In order to tackle these problems, image-
processing circuits are typically associated to image sensors as a part of the whole vision 
system. Usually, two areas coexist within the same chip for sensing and preprocessing 
that are implemented onto the same integrated circuit.  

Robotics and intelligent vehicles need sensors with fast response time, low energy 
consumption, able to extract, from the environment, high-level information [1][2]. 
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Adding hardware operators near pixels increases the computations potentiality and 
reduces inputs/outputs operations towards the central processor unit.  

The integration of pixels array and image processing circuits on a single monolithic 
chip makes the system more compact and allows enhancing the behavior and the 
response of the sensor. Hence, to achieve low-level image processing tasks (early-vision), 
an artificial retina is a smart sensor which integrates analog and/or digital processing 
circuits in the pixel [3][4] or at the edge of the pixels array [5].  

Moreover, this paper is built to get a conclusion on the aptitude of the retinas, as 
smart sensors, to become potential candidates for a system on chip, consequently to reach 
an algorithm-architecture adequacy.  

We have done a comparison relating two different architectures dedicated for a vision 
system. The first one implements a logarithmic APS (Active Pixel Sensor) imager and a 
microprocessor. The second involves the same microprocessor with a CMOS artificial 
retina that implements hardware operators and analog microprocessors. We have 
designed two vision systems. The comparison is related to image processing time. 

2. Image Processing Architectures: State of the Art 

Different partitions for the architectural implementation of on-chip image processing 
with CMOS image sensors are proposed in [6]. The partition does not take into account 
only the circuit density, but includes also the nature of image processing algorithms and 
the choice of the operators integrated in its focal plane with the pixels. The difference 
between partitions is the location of the signal processing unit, known as a Processing 
Element (PE); this location becomes the discriminating factor of the different 
implementation structures: 

The pixel processing, like the approach presented by P. Dudeck in [8], consists of one 
processing element (PE) per pixel. Each pixel typically consists of a photodetector, an 
active buffer and a signal processing element. The pixel-level processing promises many 
significant advantages, including low power as well as the ability to adapt image capture 
and processing to different environments during light integration. However, the popular 
use of this design idea has been blocked by the severe limitations on pixel size, the low 
fill factor and the restricted number of transistors in each PE. 

In a view of great block partitioning, a global processing unit can be implemented 
beside the array of pixels. This way to do is one of the obvious integration methods due 
to its conceptual simplicity and the flexibility of the parameterization of the design 
features. Each PE is located at the serial output channel at the end of the chip. There are 
fewer restrictions on the implementation area of the PE, leading to a high fill factor of the 
pixel and a more flexible design. However, the bottleneck of the processing speed of the 
chip becomes the operational speed of the PE, and therefore, a fast PE is essentially 
required. The fast speed of the PE potentially results in the high complexity of the design 
[7] and the high power consumption of the chip [9]. 

Another structure is the frame memory processing. A memory array with the same 
number of pixels as the sensor is located below the imager array. Typically, the image 
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memory is an analog frame memory that requires less complexity of design and 
processing time [10]. However, this structure consumes a large area, large power and 
high fabrication cost. Structures other than frame memory face the difficulty in 
implementing temporal storage. The frame memory is the most adequate structure that 
permits iterative operation and frame operation, critical for some image processing 
algorithms in a real time mode.  

Even with these disadvantages, smart sensors are still attractive, mainly because of 
their effective cost, size and speed with various on-chip functionalities [11]. Simply, 
benefits exist when a camera with a computer are converted into a small sized vision 
system on chip (SoC). 
 

3. Vision Systems Implementation 

3.1.  An Artificial Retina Based Vision System (PARIS-ARM) 

3.1.1. Sensor’s architecture 

 
PARIS (Parallel Analog Retina-like Image Sensor) is an architecture model which 

implements, in the same circuit, an array of pixels, integrating memories, and an analog 
processors vector [12]. The architecture, shown in figure 1, allows a high degree of 
parallelism and a balanced compromise between communication and computations. 
Indeed, to reduce the area of the pixels and to increase the fill factor, the image 
processing is centered on a row of processors. Such approach presents the advantage to 
enable the design of complex processing units without decreasing the resolution. In 
return, because the parallelism is applied to a row of pixels, the computations which 
concern more than one pixel have to be processed in a sequential way. However, if a 
sequential execution increases the time of processing for a given operation, it allows 
more flexible process. With this typical readout mechanism of image, the column 
processing offers the advantages of parallel processing that permits high frequency and 
thus low power consumption. Furthermore, it becomes possible to chain basic functions 
in an arbitrary order, as in any digital SIMD (Single Instruction - Multiple Data) 
machine. The resulting low-level information extracted by the can be then processed by a 
microprocessor. 

The array of pixels constitutes the core of the architecture. Pixels can be randomly 
read allowing windows of images or regions of interet (RoI). The selected mode, for the 
transduction of the light, is the integration mode. Two vertical bipolar transistors, 
associated in parallel, constitute the photosensor. For a given surface, compared to classic 
photodiodes, this disposal increases the sensitivity while preserving a large bandwidth 
[13] and a short response time can be obtained in a snapshot acquisition. The photosensor 
is then used as a current source that discharges a capacitor previously set to a voltage 
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Vref. In some cases, the semi-parallel processing imposes to store temporary results for 
every pixel in four MOS capacitors used as analog memories (figure 2). One of the four 
memories is used to store the analog voltage deriving from the photo-sensor. The pixel 
area is 50x50 µm² with a Fill Factor equal to 11%.  

This approach eliminates the input/output bottleneck between extra-circuits even if 
there is a restriction on the implementation area, particularly for column width. Still, 
there is suppleness when designing the processing operators’ area: the processing 
implementation is more flexible relatively to the length of the columns. Pixels of the 
same column exchange their data with the corresponding processing element (PE) 
through a Digital Analog Bus (DAB). So as to access any of its four memories, each 
pixel includes a bidirectional (4 to 1) multiplexer. A set of switches allows selecting the 
voltage stored in one of the four capacitors. This voltage is copied out on the DAB thanks 
to a bi-directional amplifier. The same amplifier is used to write the same voltage on a 
chosen capacitor.  

 

The array of pixels is associated to a vector of processors operating in an 
analog/digital mixed mode (figure 3). In this paper, we shall detail only the analog 
processing unit: AP (figure 4). Each AP unit implements three capacitors, one OTA 
(Operational Transconductance Amplifier) and a set of switches that can be controlled by 
a sequencer.  
 
 

Its functioning is much like a bit stream DAC: An input voltage set the initial charges 
in Cin1. The iterative activation of switches “mean” and/or “reset” reduces the amount of 
charges in Cin1. When “mean” is activated (Cin1 and Cin2 are connected together), and 
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Fig. 1.  Sensor’s Architecture 
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since Cin1 and Cin2 are at equal value, the charge in Cin1 is divided by two. Iterating the 
operation N times, this step leads to a charge in Cin1 of the form:  

1 1 1 / 2N
in in inQ C V= 〈 ⋅ 〉             (1) 

 
 
 

 
AP: Analog Processor 
BU: Boolean Unit 

Reg: Registers 
Mux: Multiplexer 

Fig. 3.  Analog-Digital Processor (processing unit) Architecture 

 
Fig. 2.  Pixel Scheme (OTA: Operational Transconductance Amplifier) 
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Thanks to the OTA, the remaining charge in capacitor Cin1 is transferred to Cout when 
switch “Add”, or “Sub” are “On”. Therefore, the charges initially in Cin1 are multiplied by 
a programmable fixed-point value. The capacitor Cout is so used as an accumulator that 
adds or subtracts charges flowing from Cin1. More detailed examples of operations can be 
found in [14].  

In order to validate this architecture, a first prototype circuit has been designed 
including 16x16 pixels and 16 analog processing units. This first circuit allows validating 
the integrated operators through some image processing algorithms like edge and 
movement detection.  

 
Using a standard 0.6 µm CMOS, DLP (Double-Layer Polysilicon) technology, this 

prototype “PARIS1” is designed to support up to 256x256 pixels. Considering this 
architecture and the technology used an artificial retina with higher resolution would lead 
to hard design constrain such on pixel access time and power consumption. To reduce 

costs the first prototype implements 16x16 pixels with 16 analog processors.  
At a first order, the accuracy of the computations depends on the dispersion of the 

components values. The response dispersion between two AP units is 1%. The main 
characteristics of this chip are summarized in Table 1. Notice that the given pixel power 
consumption is its peak power; i.e. when the pixel is addressed. In other cases the OTA 
of the pixels are switched off and the pixel power consumptions is only due to C4 

 

 
 

APout: Analog Processor Output CMPout: 
Comparator output 

APin: Analog Processor input 

Fig. 4.  Analog Processor (AP) Unit Scheme 



A Smart Architecture for Low-Level Image Computing   7 
 

resetting. In the same way, when the Processing Unit is inactive its OTA is switched off. 
Hence, the maximum power of the analog cells is: C*[Ppixel + PProcessing Unit], where C is the 
number of columns, Ppixel and PProcessing Unit are respectively the pixel power and is the 
processing unit power. 

 

Table 1.  Main characteristics of PARIS circuit 

 
Circuit area (including pads)  10 mm² 

Resolution (Pixels) 16x16 
Number of APUs 16 

Pixel Area 50x50 µm² 
Area per Processing Unit 50x200 µm² 

Clock Frequency 10 MHz 
Processing Unit Power Consumption    300 µW 
Row (16 Pixels) Power Consumption    100 µW 

 

3.1.2. Global Architecture (PARIS-ARM) 

We have designed a vision system (PARIS-ARM) based on PARIS1 retina, 
implementing converter DAC/ADC and a CPU core: the 16/32-bit ARM7TDMI*  RISC 
processor. It is a low-power, general purpose microprocessor, operating at 50 MHz, 
developed for custom integrated circuits.  

The embedded In-Circuit Emulator (ICE) is an additional hardware that is 
incorporated with the ARM core. Supported by the ARM software and the Test Access 
Port (TAP), it allows debugging, downloading, and testing software on the ARM 
microprocessor. 

The retina, used as a standard peripheral of the microprocessor, is dedicated for image 
acquisition and low-level image processing.  

With all principal components listed above, we obtain an architecture that uses a fully 
programmable smart retina. Thanks to the analog processing units, this artificial retina 
extracts the low-level information (e.g. edges detection). Hence, the system, supported by 
the processor, becomes more compact and can achieve processing suitable for real time 
applications.  

The advantage of this architecture remains in the parallel execution of a consequent 
number of low level operations in the array integrating operators shared by groups of 
pixels. This allows saving expensive resources of computation, and decreasing the energy 
consumption. In term of computing power, this structure is more advantageous than that 
based on a CCD sensor associated to a microprocessor [15]. Figure 5 shows the global 

 
* ARM System-on-Chip Architecture (2nd Edition), Steve Furber, September 2000. 
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architecture of the system and gives an overview of the experimental module (PARIS-
ARM) implemented for test and measurements. 
 

 

 

 
 
 
 

 

Fig. 5.  Global architecture of PARIS1 based vision system and the Experimental module PARIS-ARM 

 

3.2.  A Logarithmic CMOS Sensor Based Vision System (FUGA-ARM) 

 
In recent years CMOS image sensors have started to attract the attention in the field 

of electronic imaging that was previously dominated by charge-coupled devices (CCD). 
The reason is not only related to economic considerations but also to the potential of 
realizing devices with capabilities not achievable with CCDs. For applications where the 
scene light intensity varies over a wide range, dynamic range is a characteristic that 
makes CMOS image sensors attractive in comparison with CCDs [17]. An instance is a 
typical scene encountered in an outdoor environment where the light intensity varies over 
a wide range, as, for example, six decades. Image sensors with logarithmic response offer 
a solution in such situations. However, many works have been reported on high dynamic 
range of these logarithmic CMOS sensors having 130 dB like a dynamic [18][19].  

Since the logarithmic sensors are non-integrating sensors (there is no control of the 
integration time), they can be an alternative to linear CMOS sensors. Due to their large 
dynamic range, they can deal with images having large contrast. This makes them very 
suitable for outdoor applications.  

With to the random access, regions of interest (ROI) can be read out and processed. 
This reduces the image processing, resulting in faster image processing systems.  
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We have modeled a vision system (FUGA-ARM) whose architecture, shown in figure 
6, is based on a logarithmic CMOS sensor (FUGA1000 figure 7), from FillFactory NV 
(Belgium) [20] and an ARM microprocessor (the same used for PARIS-ARM vision 
system).  

The CMOS sensor (FUGA1000) is a 0.4528 inches (type-2/3”) random addressable 
1024x1024 pixels. It has a logarithmic light power to signal conversion. This monolithic 
digital chip integrates a 10 bit ADC and digital gain/offset control. It behaves like a 1 
Mbyte ROM. After application of an X-Y address, corresponding to X-Y position of a 
pixel in the array, a 10 bit digital word corresponding to light intensity on the addressed 
pixel is returned. 

Even if the sensor is really random addressed, pixels do not have a memory and there 
is no charge integration. Triggering and snapshot (synchronous shutter) are not possible. 

 

 
Fig. 6. Second architecture implementing a logarithmic CMOS sensor and an ARM7TDMI microprocessor. 

 
 

 
Fig. 7. The Logarithmic CMOS sensor (1024x1024 Pixels) 
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4. On-Chip and off-Chip Image Processing 

 

4.1. On Chip Image Processing 

 
The basis of the smart vision system on chip concept is that analog VLSI systems 

with low precision are sufficient for implementing many low-level vision algorithms for 
application-specific tasks. Conventionally, smart sensors are not general-purpose devices. 
They are specifically designed for dedicated applications.  

Yet, in this paper, we do not wish to limit implementations to application-specific 
tasks, but also to allow this implementation to be used with general-purpose applications 
such as DSP† like image processors with programmability. The idea is based on the fact 
that many of the early level image processing operations, when used with general-
purpose chips, are commonly shared with many image processors and do not require 
programmability. From the point of view of on-chip implementation, such algorithms are 
relatively pre-determined and fixed and their low precision can be compensated later by a 
back-end processing. Here, we will investigate what kind of image processing algorithms 
can be integrated on smart sensors as a part of early vision sequences and we will discuss 
their merits and the issues that designers should consider in advance. 

General image processing consists of several image analysis processing steps: image 
acquisition, pre-processing, segmentation, representation or description, recognition and 
interpretation. This order can vary for different applications, and some stages of the 
processes can be omitted.  

Local operation is also called mask operation where each pixel is modified according 
to the values of the pixel’s neighbours (using kernel convolution). Denoting the pixels 
grey-levels at any location by Pxy, the response of a mask (3x3 kernel convolution as 
example) is given by equations (2) and (3): 
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† Digital Signal Processor 
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The grey-level xyP of the pixel located at (x, y) position is replaced by xyO  value if 

the kernel mask is at the (x, y) location in the image. This computation is operated on 
each pixel moving the mask by one pixel location in the image at each step. Linear spatial 
filters are defined such that the final pixel value, xyO , can be computed as a weighted 
sum of convolution mask (non-linear filters cannot be implemented in this way).  

In the above case, a 3x3 local mask was taken as an example for the convolution 
mask. However, the size of the convolution mask can be expanded to 5x5, 7x7, 9x9, and 
larger, depending on the filter to be implemented. 

For the on-chip integration with image sensors, local operations provide advantages 
of real time operation in acquisition and processing images, such as implementations of 
many practical linear spatial filters and image enhancement algorithms.  

In order to understand the nature of a local operation and to find an adequate 
relationship between algorithms and on-chip implementations, we will look into the most 
usual algorithms, grouped according to the similarity of functional processing. The 
diagram presented in figure 8 allows understanding the functioning of such architecture 
(where each column is assigned to an analog processor). We choose a classical spatial 
filter example (a convolution with a 3x3 matrix). The Laplacian kernel L used is given by 
the matrix (4):  

 
 

 
 

                             L =  
0 -1/4 0 

-1/4 1 -1/4 
0 -1/4 0  

                                               (4) 

 
Pixels of the same row are simultaneously processed by the analog processor vector 

and the computations are iterated on image rows. The arithmetic operations are carried 
out in analog. The accumulation of the intermediate results is achieved in the analog 
processor using the internal analog registers.  Starting from an acquired image, the figure 
9 shows the L filtering operation result of an NxN pixels image, obtained by PARIS1 
(N=16). Such operation is achieved in 6.8 ms. This computation time is globally due to: 
T= N. (Tadd + 4Tdiv + 4 Tsub)   where Tadd, Tdiv and Tsub are the respective one pixel 
computation time, for an addition, a division and a subtraction operations. The 
computation time is proportional only to the number of rows and more elaborated 
algorithms can be implemented similarly.  

Similar to averaging or smoothing, differentiation can be used to sharpen an image 
leaving only boundary lines and edges of the objects. This is a high pass filter. The most 
common methods of differentiation in image processing are the difference, the gradient 
and Laplacian operators. The difference filter is the simplest form of the differentiation 
subtracting adjacent pixels from the centred pixel in the horizontal and vertical directions. 
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The gradient filters represent the gradients of the neighbouring pixels (image 
differentiation) in forms of matrices. These gradient approaches and their mask 
implementations are represented with various methods: Robert, Prewitt, Sobel, Kirsch 
and Robinson methods [21].  

The different local operations can be categorized into three major groups: smoothing 
filters, sharpening filters and Laplacian edge detection filters. Examples of the local 
operation algorithms are described in [22]. We have successfully implemented and tested 
a number of algorithms, including convolution, linear filtering, edge detection, motion 
detection and estimation. Some examples are presented below. Images are processed with 
different values of luminosity using the exposure time self calibration. Figure 10 gives 
examples of processed images in a luminosity range of (10-1000 Lux). 
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Fig.8.  Diagram of the L filter operation 

 

 
Fig.9.  Original image (left) and filtered image (right) 
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Binary Image 
Result of the implemented comparator  

 
 

 
 

Vertical Sobel operation 
Result of the analog processor vector 

 

 
 

Horizontal Sobel operation 
Result of the analog processor vector   

 
Fig.10. Examples of processed images 

  

4.2. Off Chip FPN Correction and Image Processing: 

The major drawback of the logarithmic sensor is the presence of a time-invariant 
noise in the images. The Fixed Pattern Noise (FPN) is caused by the non-uniformity of 
the transistors characteristics. In particular, threshold voltage variations introduce a 
voltage-offset characteristic for each pixel. The continuous-time readout of a logarithmic 
pixel makes the use of Correlated Double Sampling for the suppression of static pixel-to-
pixel offsets quite impossible. As a result, the raw image output of such a sensor contains 
a large overall non-uniformity. 

The downstream system of the sensor is then used to compensate the FPN: as the 
FPN is static in time, a simple look-up table with the size of the sensor's resolution can be 
used for a first-order correction of each individual pixel. Higher-order corrections can be 
employed when the application demands higher image quality. The FPN noise is 
removed from the images by subtracting to each pixel value the corresponding offset.  

For the CMOS/APS sensor, the FPN correction is performed by the ARM 
microprocessor in real time and it is transparent (this operation can be achieved by an 
FPGA circuit for example). The sensor is shipped with one default correction frame. 
Figure 11 shows an image with the FPN and gives image after FPN correction. 

The response of the logarithmic CMOS sensor typically is expressed as 50 mV output 
per decade of light intensity. After first order FPN calibration and using an ADC, a 
response non-uniformity of below 2mV remains, being quite constant over the optical 
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range. This non-uniformity translates to about 4% of a decade. The temporal noise of the 
logarithmic sensor is 0.2 mV RMS. 

 
 

 

 

 

 
                 (a) (b) 

 

Fig. 11.  (a) Image with FPN. (b) Image with removed FPN 

 
For the FUGA-ARM vision system, images are processed on the ARM 

microprocessor. We established several algorithms of image processing similar to those 
established for PARIS-ARM vision system. Other more complicated algorithms which 
require diversified computing with exponential power were also established with the 
FUGA/ARM system. We recall that to carry out comparisons relating to the processing 
times, we chose to use the same processor (ARM7TDMI) for the different implemented 
systems. 

The filter we used has been designed by Federico Garcia Lorca [23]. This filter is a 
simplification of the Deriche filter [24], the recursive implementation of the optimal 
Canny filter. The smoother is applied horizontally and vertically on the image, in a serial 
way. Then a derivator is applied. Garcia Lorca derivator is, after simplification of 
Deriche, derivator, a 3x3 convolution kernel instead of a recursive derivator. 

 
 

          ( ) (1 )². ( ) 2 . ( 1) ². ( 2)y n x n y n y nλ λ λ= − + − − −            (5)   
 

        2 2( ) (1 ) ( ) 2 ( 1) ( 2)y n x n y n y nγ γ γ= − + − − −             (6) 
 

with    αγ −= e                            (7) 
 
 

( )x n  is the pixel source value. ( )y n  is the pixel destination value and n  is the pixel 
index in a one dimensional table representing the image. γ  is an exponential parameter 
allowing much more filtering flexibility, depending on the noise within the image . If the 
image is very noisy we use a very smoothing filter: ]7.0,5.0[=α  otherwise we use 
bigger values of α : [0.8,  1.0]α = . Figure 12 gives examples of smoothing and 
derivator filters implemented with the FUGA-ARM vision system and applied to 
120x120 pixels images. 
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Vertical Smoothing (V)  

 

 
Smoothing (HV) 

 

 
Vertical Sobel (H) 

 

 

 
Horizontal Sobel (V) 

 

 
Sobel (HV) 

 

Fig. 12.  Examples of Image Processing Implemented with the FUGA1000 Sensor Based Vision System 

 

5. Time Comparison in Image Processing 

 
The aim is to compare the vision system implementing the logarithmic CMOS imager 

(FUGA-ARM) with the one based on PARIS retina (PARIS-ARM). This comparison is 
related to image processing time and don’t take into account the exposure time for which 
we developed a continuous auto-calibration algorithm that can manage this state for our 
vision system. This avoids pixels saturation and gives an adaptive amplification of pixels 
output, which is necessary to the post-processing. 

The calibration concept is based on the fact that when using a photo-sensor in an 
integration mode, a constant luminosity leads to a voltage drop that varies according to 
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the exposure time. If the luminosity is high, the exposure time must be decreased, on the 
other hand if the luminosity is low the exposure time should be increased. One should 
then aim at lower exposure time to have faster image processing algorithms.  

We have used a Laplacian edge detection algorithm and a Sobel filter algorithm to 
take several measurements of the computation times relating to the two architectures 
described bellow. For the artificial retina based system, these computations are carried 
out by the analog processors integrated on-chip. For the FUGA-ARM system, these 
computations are carried out by the ARM microprocessor.   

The two computation time graphics presented in the figure 13 translate the diverse 
computing times for different square sensor pixel resolutions for both systems. It is 
significant to note that the acquisition time of the frames is not included in these 
measurements in order to evaluate just the data processing computing time. Times 
relating to the PARIS artificial retina were obtained by extension of the data processing 
timing obtained from those of the first prototype [12].   

We deduce that the computation time for the FUGA-ARM system varies according to 
the pixels number N² (quadratic form). Hence, the computation time for PARIS-ARM 
system varies according to the rows number N (linear form) thanks to the analog 
processor vector. The equation (8) gives the definition of the CPP (Cycle Per Pixel) of a 
processor.  

 

CLKF  is the processor frequency, T  is the time computing, L  is the rows number and 

C  is the columns number: 
 
 

CL
FT

CPP CLK

*
*

=        (8)
   

 
 
Figure 14 shows the evolution of the CPP for PARIS-ARM system and FUGA-ARM 

system. 
Consequently, the microcontroller of the FUGA-ARM system carries out a uniform 

CPP relative to regular image processing independently of the number of proceeded 
pixels. For PARIS-ARM system, the CPP factor is inversely proportional to the rows 
number (N).  

As a result, our implementation demonstrates the advantages of the single chip 
solution. Applications involving image processing algorithms will be less complex and 
efficient especially for high resolution.  
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Fig. 13. Processing time of an edge detection: PARIS-ARM architecture versus ARM/Logarithmic CMOS 

sensor  
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Fig. 14. Evolution of the CPP (Cycle Per Pixel) for PARIS-ARM and the FUGA-ARM architectures 
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6. Conclusion 

 
When we wish to carry out real time image acquisition and processing, the hardware 

processing implementation with smart sensors becomes a great advantage. This paper 
presents one experience of this concept named a retina.  

It is concluded that on-chip image processing with retinas will offer benefits of fast 
and parallel processing. Since each vision algorithm has its own applications and design 
specifications, it is difficult to predetermine optimal design architecture for every vision 
algorithm. However, in general, the column structures appear to be a good choice for 
typical image processing algorithms. 

We have presented the architecture and the implementation of a smart integrated 
artificial retina based vision system. The goal is the integration of a microprocessor in the 
artificial retina to optimise the implemented hardware operators. Hence, designers and 
researchers can have a better understanding of smart sensing for intelligent vehicles [25].  

We propose implementing such a system with high resolution in a complex 
application: intelligent vehicle embedding smart sensors for autonomous collision 
avoidance and objects tracking. 
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